

探討共軍戰略支援部隊作戰能力

上校

提要:

- 一、隨著作戰空間擴及至網路空間與電磁頻譜,中共為獲取資訊戰優勢 ,於2015年底將網路、電戰、太空及心理戰等部隊整併為「戰略支 援部隊」;2018年美軍也將網路戰與電子戰整合運用,做為獲取作 戰勝利必要手段,正凸顯出「網電一體戰」所帶來的改變,對軍事 行動成功至關重要。
- 二、2019年中共「戰略支援部隊」於建政70週年閱兵時,公開宣示資訊 方隊已具有網路戰與電子戰整合能力,其意味著偵測(搜)範圍,將 從虛擬疆土擴及至實體電子疆界,攻擊能力也因多領域空間整合有 所提升,此舉將對我國軍資電作戰防禦能力造成極大威脅。
- 三、面對中共的威脅,國軍在確保指管通資系統暢通部分將面臨巨大挑戰,也對我遂行聯合作戰造成衝擊。基此,積極發展人工智慧、整合指管通資情監偵系統、採購電磁頻譜管理工具、提升軍事決策反制能力,並於各聯戰任務部隊建立「網路、電磁頻譜管理中心」,

方能有助未來防衛作戰任務遂行。

關鍵詞:網電一體戰、資訊戰優勢、網路戰、電子戰

壹、前言

隨著無線電涵蓋網路範圍與日俱增,同 步獲取網路空間及電磁頻譜等領域之主動權 ,對贏得戰爭勝利至關重要。2015年底,中 共為能主動掌握資訊戰優勢,將網路戰、電 子戰、太空及心理戰等專業部隊整併為「戰 略支援部隊」,並由中央軍委統一指揮,主 要目的為奪占網路空間及電磁頻譜之制高點 ,以獲取掌握戰爭主動權¹。2018年美軍也 已意識到要提升戰場覺知能力,強化快速兵 力投射,除具備擁有陸、海、空等作戰領域 優勢外,還須能同步掌握網路空間和電磁頻 譜等作戰領域內活動,以獲取軍事行動相對 優勢²。面對科技進步所改變的軍事作戰環 境,整合網路空間及電磁頻譜等作戰能力,

註1: Bryan Clark, "2019 Forecast: Hard Choices On Invisible Warfare," breaking defense, January 4,2019 ,https://breakingdefense. com/2019/01/2019-forecast-hard-choices-on-invisible-warfare/,檢索日期:2020年2月1日。

註2: Sam Cohen, "Integrating Cyber and Electronic Warfare," The Cyber Edge, March 5, 2018, https://www.afcea.org/content/integrating-cyber-and-electronic-warfare,檢索日期: 2020年2月1日。

以支援協調各軍種部隊遂行聯合作戰,將是 確保戰場獲勝之基石。

面對中共資訊戰優勢之威脅,確保指管 通資情監偵系統(C4ISR)暢通,已成為我國 年度演習關鍵核心驗證項目。依我國《108 年國防報告書》指出,中共在其「網電一體 戰」的發展趨勢下,已具備對我國政、經、 軍等重要機關實施網路資訊攻擊能力,並伺 機散播不實消息,其結果將癱瘓我國重要目 標及擾亂民心。另一方面,中共為驗證軍 隊改革後聯合協同作戰及反分裂、反介入等 能力,2019年7月底於浙江舟山島和福建東 山島同時舉行軍演時,由中央軍委聯合作戰 指揮中心統一指揮,參演部隊包括陸、海、 空軍及火箭軍,還有戰略支援部隊和聯勤保 障部隊4,正足以顯示出奪占網路空間及電 磁頻譜之制高點,將攸關臺海戰役勝負關鍵 因素。因此,探討中共「戰略支援部隊」對 我國軍資電作戰防護威脅能力就更顯重要。

本文從中共「網電一體戰」角度切入, 以探究「戰略支援部隊」之作戰能力,進而 檢視我國遂行「戰力防護、濱海決勝、灘岸 殲敵」中有關資電作戰能力及其中不足之處 ,並據以提出策進建議,期能形塑出國軍聯 合通資安全環境,以保障作戰指揮通信順暢 ,確保防衛作戰成功,這也是撰寫本文主要 的目的。

貳、中共發展「網電一體戰」目 的及作戰構想之探討

隨著作戰空間擴及至網路空間及電磁頻 譜,統一指揮整合運用網路戰與電子戰,已 成為獲取軍事勝利之必要手段。因此,中共 「網電一體戰」發展目的及有關作戰構想內 容,確值深入探討。

一、目的

隨著聯合作戰之單兵、武器、儎台(具) 對指管通資系統需求不斷增長,使得數據網 路愈來愈依靠無線電傳輸,網路空間與電磁 頻譜已是密不可分。「網電一體戰」係透過 電子戰與網路戰整合運用,癱瘓敵國指管通 資系統,擾亂資訊處理與運用能力⁵。根據 研究,隨著電子戰愈來愈依靠網路技術,綜 合使用電子戰和網路戰攻擊,已成為削弱敵 國資訊戰優勢,取得資訊控制權,提升作戰 影響力最佳攻擊手段⁶。

不僅如此,長期關注中共軍事與安全問 題研究領域的美國學者鄭迪恩(Dean, Cheng)教授表示,中共為打贏資訊化條件下 的局部戰爭,著手整合網路戰與電子戰等手 段,強化軍事行動聯合情監偵能力,使其偵 蒐範圍從虛擬數位疆土,擴展到由感測器、 路由器和無線電所組成的有形疆界,以提升 支援聯戰行動能力,進而掌握戰爭主動權⁷ 。此外,2017年中共《解放軍報》軍事論壇

註3:國防報告書編纂委員會,《中華民國108年國防報告書》(國防部,2019年9月),頁40。

註5:載清民,《直面信息戰》(北京:國防大學出版社,2002年7月),頁57-60。

82 海軍學術雙月刊第五十四卷第三期

註4:盧伯華,〈史上罕見共軍大演習 五大戰區齊動 含對台2場軍演〉,中時電子報,2019年8月2日,https://www.chinatimes. com/realtimenews/20190802003087-260417?chdtv,檢索日期:2020年2月1日。

註6:劉尚富、王英,〈網電一體戰及其進攻戰法〉,《艦船電子工程》,第4期,第262期,2016年,頁10-11。

註7: Cheng ,Dean , Cyber Dragon: Inside China's Information Warfare and Cyber Operations (United States ,Praeger,2016), p.102。

從中共「網電一體戰」探討共軍戰略支援部隊作戰能力

刊登「網電一體戰」中指出,「整合網路空 間及電磁頻譜等領域內作戰能力,將能改變 聯合作戰力量集中方式、加速作戰進程,提 高作戰效益,拓展作戰空間。⁸」換言之, 整合網路空間及電磁頻譜等作戰能量,是中 共打贏資訊化條件下局部戰爭之必要手段。

二、作戰構想及手段

D. DOwner

隨著網路戰、電子戰成為中共軍事戰略 重要武器,運用網路戰及電子戰,有助於提 升軍事行動決策優勢、加速癱瘓敵國指管通 資系統、強化整體防禦能力。相關作戰構想 及手段(如表一),摘要分述如後:

(一)作戰構想

1. 要獲取戰爭勝利,就需優先癱瘓敵國 指管通資系統,運用網路病毒癱瘓敵人電腦 系統。同時,運用電子戰干擾、摧毀指管系 統,並配合硬殺手段,對重要節點之網路、 通資系統實施攻擊⁹。美國國防部在2017年 出版的《中共解放軍軍事評估報告》(Military and Security Developments Involving the People's Republic of China)指 出,中共「戰略支援部隊」的戰略構想為將 網路戰、電子戰和心理戰統合運用,以削弱 敵國在戰爭中無法正常獲取、處理和使用資 訊能力,迫使軍艦、飛機無法通聯傳輸數據 ¹⁰。此外,隨著網路與電信基礎設施的無線 電應用方式日益擴展,使得商用通信和軍用 指管系統愈來依賴無線電傳輸,網路空間與 電磁頻譜彼此關聯愈趨緊密¹¹,同步運用網 路戰及電子戰攻擊敵國關鍵基礎設施,將能 拒止民眾無法正確接收資訊,進而達到嚇阻 他國不敢輕啟戰端¹²。

37 3783

2. 再根據2019年版的《中共解放軍軍事評估報告》表示,資訊封鎖或資訊優勢,已成為中共獲取戰爭主動權必要條件。資訊封鎖為整合太空、網路空間及電磁頻譜等作戰領域之軍事與非軍事能力結合;另外,資訊優勢為透過先進電子戰系統,結合網路戰、反太空能力以及文宣、心戰,達到控制國際及敵國輿情方向¹³。故同步使用網路戰與電子戰,對敵國指管通資系統攻擊,有助提升聯合作戰能力,獲取戰爭話語權。例如2014年俄羅斯成功占領烏克蘭克里米亞,其主因於俄羅斯掌握網路空間及電磁頻譜等作戰優勢,癱瘓指管通資系統,掌握國際輿論優勢¹⁴。

註9: Roy Kamphausen, Andrew Scobell著, 黃文啟譯,《解讀共軍兵力規模》(Right-Sizing the People's Libration Army: Exploring the Contours of China's Military)(臺北:國防部史政編譯室, 2010年6月),頁146。

註10: Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2017," May 15, 2017, pp.58-59。

註11: Wayne W. Grigsby Jr著, 梁正綱譯, 〈網路電磁作業:統合地面作戰之致勝關鍵〉(CEMA: A Key to Success in Unified Land Operations), 《國防譯粹》(臺北), 第40卷, 第2期, 國防部史政編譯室, 2013年2月, 頁32。

註12: Richard A. Poisel著,徐旺譯,《電子戰與信息戰系統》(Information Warfare and Electronic Warfare Systems)(北京:國防 工業出版社,2017年),頁41。

註13: Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2019," May, 2019, pp.56-57。

註14: Edward C. Cardon, David P. McHenry,趙炳強譯,〈網際空間作戰中創新的重要性〉(The Relevance of Culture: Recognizing the Importance of Innovation in Cyberspace Operations),《國防譯粹》(臺北),第44卷,第3期,國防部史政編譯室, 2017年3月,頁23。

		X · T/X 构电 盟我」IT我情心兴于权			
區	分	· 目 的			
作戰	構想	整合網路空間及電磁頻譜等作戰能量,擴大多領域偵蒐範圍,獲取軍事決策優勢,提升聯合作力。同時,反制敵國對自身C4ISR等網路、通信等節點攻擊,進而達到確保整體安全。	戰能		
作戰手段與目標	í (祭	整合網路空間及電磁頻譜偵察能量,對敵國實體電子設備、網路節點,擴及至數位資料庫及個 子信箱,提升軍事行動決策優勢。	人電		
	攻 撃	同步運用網路戰及電子戰,攻擊敵國軍事指管通情系統及國家網路、通信等關鍵基礎設施,加 瘓敵國指管通資鏈路中斷,掌握戰爭主動權。	速癱		
	防 禦	防護自身指管通資系統遭定位、干擾,確保在網路空間及電磁頻譜等作戰領域自由活動,以確 資系統及數據資料正常運作,強化整體安全防護能力。	保通		
資料來	資料來源:作者自行整理製表。				

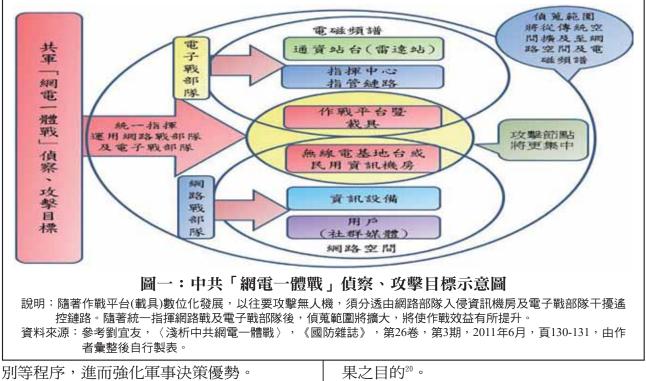
表一:中共「網電一體戰」作戰構想與手段

總而言之,中共正整合網路空間及電磁 頻譜等作戰能量,以補足網路戰及電子戰單 方面不足之處(網路戰無法對已實體隔離通 資系統進行干擾,電子戰則無法竊取、竄改 數據資料等);換言之,同步整合運用網路 戰及電子戰後,將使偵蒐、攻擊目標從軍事 指管系統,擴大至個人數據和國家網路、電 信等基礎設施(中共「網電一體戰」偵察、 攻擊目標,如圖一),影響所及將有助於提 升戰場覺知能力,加速癱瘓敵國指管通資系 統,強化整體防禦作戰能力,其結果使敵國 兵力隔離戰場,無法發揮功效。

(二)作戰手段

 1.整合網路空間及電磁頻譜偵察能量, 提升軍事行動決策優勢:

隨著戰場空間不斷擴及至網路空間及電 磁頻譜,整合戰場覺知能力,對提升軍事行 動決策優勢至關重要。中共為反制美軍太空 與網路優勢的攻勢系統,已將情監偵系統及 指揮與管制數據鏈路,納入戰力整合重要項 目¹⁵。偵察手段主要利用網路及電子設備, 對敵國通資網路系統及各種輻射源設備(雷 達)實施偵測、分析,如敵網路伺服器、電 子系統及無線電裝備等,以擴大偵察作戰領 域,提供指揮官軍事決策可靠依據¹⁶。


此外,整合軍、民科技能量,成為擴大 掌握敵情重要手段。如中共平時運用網路情 報體系,對敵國重要人員實施「進階持續性 威脅攻擊(Advanced Persistent Threat, APT)」,掌握重要目標人員數據資料,做為 戰時提供所需資訊及散布假消息,以影響作 戰判斷¹⁷;衝突一旦發生時,啟動廣域搜索 感測器定位和識別敵人部隊,如高頻超視距 雷達和商用衛星對重要區域進行全天候監視 ¹⁸。換言之,中共整合網路空間及電磁頻譜 等作戰能量後,將擴大偵蒐範圍,使其由偵 測掌握敵國軍事部署,擴及至個人資訊;此 舉有助於提升戰場覺知能力,縮減搜索、識

註15:李華強譯,〈美、日、澳海上安全合作 聯防亞太區域(中)〉,《青年日報》,2016年5月18日,版7。 註16:劉宜友,〈淺析中共網電一體戰〉,《國防雜誌》,第26卷,第3期,2011年6月,頁130。 註17:林穎佑,〈共軍軍改對亞太區域的威脅與影響〉,《中共研究》,第50卷,第4期,2016年11月,頁147。 註18:邱榮守譯,〈因應灰區侵略美電磁戰重獲優勢(下)〉,《青年日報》,2018年10月4日,版11。

84 海軍學術雙月刊第五十四卷第三期

50000 從中共「網電一體戰」探討共軍戰略支援部隊作戰能力

1957 BTERE

2. 同步運用網路戰及電子戰,加速癱瘓 指管诵資系統:

DODD D. DD. WOR

E) ODDRES

隨著全球定位系統及資料庫整合,對獲 取軍事行動優勢至關重要,網路節點、電子 訊號感測器,已成為攻擊重要目標。整合運 用網路戰及電子戰等專業部隊,能於極短時 間內發動從戰略到戰術層級的全面攻擊,透 過無線電散播網路攻擊病毒,對敵指管通情 系統實施攻擊,使敵通資系統、作戰平台和 資訊化武器系統,失去控制、迷失方向¹⁹。 此外,同步整合網路偵蒐及電子偵測,能提 供聯合火力支援計畫所需目標及戰鬥評估參 數,有助於加大縱深打擊能力,達到擴張戰

不僅如此,中共為強化網路空間監控能 力,於2016年透過〈網路安全法〉,要求境 內通信、網路營運商提供商品原始碼用做監 控管理,以擴大網路空間對個人言論審查之 能力²¹。此外,運用軍、民網路空間作戰能 量,於平時利用網路大數據資料庫,掌握敵 **國輿論動態;衝突或戰爭發起後,利用軟、** 硬殺等手段,癱瘓敵國指管通資系統及實施 網路盲傳,以引起國家政治、經濟危機²²。 此即同步運用網路戰及電子戰,對敵網路、 電信等關鍵基礎設施攻擊後,有助加速癱瘓 敵指管通資系統,降低反制能力。

3. 反制遭網路及電子設備偵蒐, 強化整

註19:劉宜友,〈淺析中共網電一體戰〉,《國防雜誌》,第26卷,第3期,2011年6月,頁130-131。 註20: The U.S. Army Concept for Cyberspace and Electronic Warfare Operations(United States (U.S.) Army Capabilities Integration Center ,TRADOC Pamphlet 525-8-6),pp.14-15 °

註21:王清安,〈從網路空間構建探討中共網路防禦能力〉《陸軍學術雙月刊》,第55卷,第564期,2019年4月1日,頁82。 註22:王清安,〈中共網路戰攻擊手段與能力之研析〉,《陸軍學術雙月刊》,第54卷,第562期,2018年12月1日,頁119。

體防禦能力:

要提升境內防禦能力,就須強化拒止、 消耗敵攻擊能力。由於數位化戰場中任何無 線電裝備系統、電磁輻射源都可能遭敵偵察 定位,並面臨精確制導武器和常規火力打擊 ,若無法做好網路加密保護及減少微波輻射 洩露,將導致作戰部署與企圖暴露²³。故無 法防禦網路及電子裝備遭敵攻擊,將無法確 保重要目標防護,尤其是在防空系統方面。 例如,以色列反導彈「鐵穹」(Iron Dome) 防禦系統,攔截目標具有九成準確率,惟當 通資系統(如地面雷達)遭敵國發送假數據及 電子干擾後,將使威脅評估能力降低,整體 防禦能力也因而下降²⁴。換言之,確保自身 電磁波段自由傳輸,遂行指管通情監偵作業 ,並阻止敵方使用各種電磁波段,即是做好 戰力保存最佳手段²⁵。例如俄羅斯赫梅明 (Khmeimim)空軍基地,在2017年成功防護13 架無人機入侵攻擊,其關鍵因素在於俄羅斯 採用同步網路攻擊及電子干擾導航系統 (GPS),致使遙控鏈路無法操控無人機所為²⁶ 。故強占網路空間及電磁頻譜等作戰領域之 制高點,對強化整體防禦能力極為重要。

總體而言,中共整合網路空間及電磁頻 譜作戰能力後,影響所及將是擴大偵蒐範圍 ,強化聯合作戰能力。同時,加速癱瘓敵國 指管通資系統,從軍事指管通資系統,擴及 至國家網路、電信等關鍵基礎設施,進而達 到嚇阻敵國不敢輕易動武,掌握戰爭主動權 。此外,也因採取「網電一體戰」,反制敵 國對自身C4ISR等攻擊能力,不僅確保自身 通信、網路等節點免遭攻擊,也強化整體安 全防禦的能力。

參、從中共「網電一體戰」角度 評估「戰略支援部隊」能力

中共整合網路空間和電磁頻譜等作戰能 力,將能加速癱瘓敵指管通資系統,提升聯 合作戰整體效能,擴大區域嚇阻能力,以下 就其「戰略支援部隊」作戰能力,摘要分述 如後:

一、能加速癱瘓敵指管通資系統

由於網路攻擊已對太空衛星造成極大威 脅,主要原因為透過網路,可以對衛星與地 面接收站間之數據、遙控鏈路及終端用戶之 網路電話等實施攻擊,進而達到控制衛星與 關閉通信網路,甚而損壞電子設備及摧毀衛 星²⁷。中共「戰略支援部隊」下轄之網路空 間作戰部隊負責網路攻擊與防禦;電子戰部 隊負責對敵指管通網情監偵系統進行欺敵、 干擾,及太空部隊負責監偵和衛星任務²⁸。 以2017年在「建軍90週年」中受閱梯隊「資

註23:劉宜友,〈淺析中共網電一體戰〉,《國防雜誌》,第26卷,第3期,2011年6月,頁131。

註24: Beyza Unal, Cyber security of NATO's Space-based Strategic Assets(London: The Royal Institute of International Affairs, 2019), p.14。

註25: Wei Chieh Huang, 〈美中電戰對抗態勢探微〉(Electronic Warfare Maneuver Space between PRC and US in Indo-Pacific Regin), 《全球防衛雜誌》,第414期,全球防衛雜誌社,2019年2月,頁80。

註26: Sam Cohen, "Integrating Cyber and Electronic Warfare," The Cyber Edge, March 5, 2018, https://www.afcea.org/content/ integrating-cyber-and-electronic-warfare,檢索日期:2020年2月1日。

註27: Todd Harrison, Zack Cooper, Kaitlyn Johnson, Thomas G. Roberts, "Escalation and Deterrence in The Second Space Age," Center for Strategic and International Studies October 2017, pp.15-16。

註28:王清安〈中共解放軍「戰略支援部隊」之發展對我陸軍威脅評估-以網路作戰部隊為例〉,《陸軍通資半年刊》,第 131期,2019年4月,頁8-9。

。 從中共「網電一體戰」探討共軍戰略支援部隊作戰能力

57 87 8 P

訊作戰群」中包含信息支援、電子偵察、電子對抗及無人機等四個方隊,顯見其戰時兵力組成的特性(編組,如圖二),亦凸顯戰場之作戰任務為掌握複雜電磁環境下戰場主動權,實現跨多領域作戰發展²⁹。

DO-ODwellage

根據2018年英國《詹氏防務周刊》 (Jane's Defence Weekly)所出版的《中國 先進的武器系統》(China's Advanced Weapons System)研究證實,中共運用網路 攻擊、竊取美國軍事及商業等科技機敏資料 後,已強化網路戰和電子戰所建構的整體戰 力,並威脅到美國在網路空間與電磁頻譜之 作戰能力³⁰。此外,中共進行網路欺騙、混 淆或電子訊號禁止等作為,將影響到美國軍 事作戰能力之通信和數據共享的速度和準確 性³¹。此亦顯示出透過無線電對敵國指管通 資系統實施電子戰和網路戰,確實有助於干 擾、摧毀敵指管通資系統,操縱敵國數據資 料,混淆作戰判斷能力。

二、提升聯合作戰整體戰力

隨著載台(具)感測器數位化發展及電腦 作業系統不斷提升,作戰空間已擴及至網路 空間及電磁頻譜,獲取資訊戰優勢已成為未 來衝突決勝關鍵因素。中共為確保戰場資訊 優勢,同步運用網路戰及電子戰等手段,拒 止、破壞敵國資訊網路系統,以保護自身指

註29: 〈慶祝中國人民解放軍建軍90週年閱兵解說詞〉,《解放軍報》,2017年8月1日,版3。

註30 : Kelly Bedard, James Clad, Cameron Scott, Jon Grevatt, China's Advanced Weapons System, Jane's By HIS Markit, May 12,2018, p.51。

註31: Sam Cohen, "Integrating Cyber and Electronic Warfare," The Cyber Edge, March 5, 2018, https://www.afcea.org/content/ integrating-cyber-and-electronic-warfare,檢索日期:2020年2月1日。

管通聯,提升聯合作戰效能²²。而透過「戰 略支援部隊」來強化支援軍事行動協調能力 ,故將原軍改前分部於總參謀二部、三部及 四部之網路戰、電子戰、太空戰等專業部隊 ,整併統由中央軍委指揮³³。

自2016年起,中共「戰略支援部隊」已 參加多起實戰訓練,演練包括2016-2017年 間參加「朱日河」聯訓基地,運用資訊化戰 場環境掌握多領域感知能力;2018年於快速 反應演練課目,測試通信機密和抗干擾能力 ;另扮演假想敵藍軍與第83集團軍的一個旅 進行對抗,強化複雜電磁環境中的偵察和反 偵察,欺騙和反欺騙等整體防禦作為,提高 自身作戰能力³⁴。不僅如此,2018年該部隊 再增加聯合通信和偵察培訓後,已具有支援 中共集團軍、旅,在複雜電磁環境下抗敵干 擾作戰能力³⁵。

除此之外,中共為反制美國軍事行動, 同步整合運用網路戰和電子戰與先進反空間 武器相結合,如高超音速飛行器與攻船飛彈 結合人工智慧與無人機蜂群,企圖對美國軍 事優勢造成重大威脅,尤其指防空能力上³⁶ 。因此,中共整合網路空間及電磁頻譜等聯 合情監偵能力,有助密切協調各軍、兵種火 力投射能力,對重要目標實施聯合打擊;同 時,利用網路戰及電子戰等反制作為,降低 遭敵方偵蒐側向,確保打擊後的生存力,亦 有助提升聯合作戰戰力。

三、擴大區域嚇阻能力

要嚇阻敵國不輕易動武,就必須具備有 足夠的能力、可信度及溝通等實力,同步運 用網路戰及電子戰,將助於強化戰略溝通能 力。隨著網路戰與電子戰成為中共戰略重要 武器,並納入聯合作戰體系後,聯合作戰效 能更已提高,還增強了火力打擊能力37。「 戰略支援部隊」在整合網路及電子等專業部 隊後,已具備將敵對國隔離在網路空間和電 磁頻譜外;同時,伴隨火箭軍成立,其戰略 嚇阻能力也大幅提升38。另外,中共運用網 路戰與電子戰,攻擊敵國關鍵軍事和民用節 點,有助於嚇阻或削弱敵國對中共進行軍事 行動反制能力"。2018年美國資安公司「火 眼」(Fireeye)研究發現,自2015年年底成 立的「戰略支援部隊」,由中共中央軍委統 一整合網路空間及電磁頻譜等作戰能力後, 其網路空間作戰範圍不會有地緣戰略限制,

註32: Cheng ,Dean , Cyber Dragon: Inside China's Information Warfare and Cyber Operations (United States ,Praeger,2016), pp.102。

- 註33: Phillip C. Saunders, Joel Wuthnow著,黃文啟譯,〈中共軍事組織變革(Assessing PLA Organizational Reforms)〉《國防 譯粹》,第43卷,第10期,國防部史政編譯室,2016年10月,頁34-35。
- 註34: Elsa B. Kania "China's Strategic Support Force At 3," the diplomat, December 29, 2018, https://thediplomat.com/2018/12/ chinas-strategic-support-force-at-3/,檢索日期:2020年2月1日。
- 註35: Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2019," May, 2019, p.49。
- 註36: Kelly Bedard, James Clad, Cameron Scott, Jon Grevatt, China's Advanced Weapons System, Jane's By HIS Markit, May 12,2018, pp.234。
- 註37:黃藝,《網路空間安全戰略研究》(北京:國防大學出版社,2013年3月),頁52。
- 註38: Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2019," May, 2019, pp.56-57。
- 註39:〈中國大力強化新興領域作戰能力建設〉,《環球軍事》,第359期,2016年2月,頁134。

從中共「網電一體戰」探討共軍戰略支援部隊作戰能力

組	織	整併網路空間作戰部隊(原軍改前,總參謀部「技術偵察部」)、電子戰部隊(「電子對抗與雷達 部」)、太空部隊、心理戰部隊,直屬中央軍委指揮。			
網電編	作 戰 組	 由戰略支援部隊編成資訊作戰群(信息支援方隊、電子偵察方隊、電子對抗方隊及無人機方隊), 受戰區編成的聯合戰役部隊作戰管制,遂行網路戰及電子戰。 戰略支援部隊協助各戰區之網路部隊、電子對抗旅(團),建構網路安全防護能量。 			
E	標	 1. 軍事指管通資系統。 2. 重要網路、通信等關鍵基礎設施。 3. 重要人物情資與國內、外輿論資訊。 			
作	偵	整合網路空間及電磁譜頻等偵蒐能力後,擴大實體電子信號偵搜(測)範圍至虛擬空間數位疆土,加 速癱瘓敵指管通資系統,其結果已具有影響它國通信和數據共享速度和準確性,進而降低敵國作戰			
戰	察	判斷能力。			
	攻	運用網路戰及電子戰等手段,拒止、破壞敵國通資系統,影響所及為整合多領域作戰空間能力,提升聯合作戰整體戰力,尤其在聯合火力攻擊,因更能密切協調各軍、兵火力投射能力,進而強化攻			
能	擊	擊能力。			
	嚇	整合網路戰及電子戰等部隊,精簡作戰指揮控制流程,並在網路部隊及電戰部隊偵搜距離加大及火			
カ	阻	箭軍支持,嚇阻能力大幅提升。			
資料來	資料來源:作者整理。				

表二:中共「戰略支援部隊」作戰能力運用、分析表

只要能連線上網,均可能成為網路攻擊目標 ⁴⁰。故同步運用網路戰及電子戰,有助於強 化嚇阻敵國不敢輕啟戰端(有關戰略支援部 隊作戰能力運用、分析,如表二)。

O-DOwnOrd

綜合言之,中共將網路戰、電子戰、太 空戰及心理戰等專業部隊整併為「戰略支援 部隊」朝向「網電一體戰」發展後,其已具 備加速癱瘓敵國指管通資系統能力,也提升 聯合作戰整體戰力與擴大區域嚇阻能力。因 此,整合網路空間及電磁頻譜等能力,奪占 網路空間及電磁頻譜之制高點,已成為中共 奪取軍事行動優勢之重要手段。

肆、對我國之威脅及策進作為

由於我國通資站台與中國大陸間距離並 非很遠,面對中共網路、電子等科技能力提 升,其「網電一體戰」作戰能力,已對我國 指管通網情監偵系統造成極大威脅。故我國 軍要成功遂行國土防衛作戰任務,就須著眼 於確保通資系統不受干擾,且數據鏈路不易 受網路駭客攻擊,以下就威脅與國軍精進作 為,分述如後:

一、威脅評估

(一) 通資站台防護面臨極大挑戰

中共為強化「網電一體戰」戰力,除
 將「電子對抗大隊(團)」編配於浙江、福建
 等據點,偵測我國與周邊海空域外,並對海
 上艦艇加強投資部署電戰裝備,以提升整個
 電子戰場作戰縱深⁴¹。另因我國部署之指管
 監偵系統岸臺(指雷達站)結構完整,不易隱
 蔽,戰時極易遭受攻擊破壞,而失去通信指
 管能力⁴²。對比中共現已擁有在第一島鏈間

註40:高士奇,〈中國近期網軍的威脅與變化〉(Threats and Changes in PLA Cyber Force),《全球防衛雜誌》,第414期,全 球防衛雜誌社,2019年2月,頁14-15。 註41:陳維漢,〈就中共「網電一體戰」理論,探討海軍通資部隊之運用與發展〉,《海軍學術雙月刊》,第49卷,第4期

,2015年8月1日,頁38。 註42:趙天豪、曾陳祥,〈從潛艦通信發展 探討海軍潛艦通信與作戰〉,《海軍學術雙月刊》,第53卷,第6期,2019年12 月1日,頁92-94。

中華民國一〇九年六月一日 89

地區,不對稱的地理及資訊優勢,其部署嚴 密的雷達陣地,縱使面對集中式飽和攻擊, 仍可以維持戰力進行電子偵察。

2. 近年來,中共在南沙群島附近以填海 造島工程興建島嶼,並在島上建造飛機場及 部署雷達站,有利於目標識別及協調部隊戰 損評估;另一方面,我國海底電纜與地區各 國相連接,一旦中共刻意切斷後,也將對美 國在地區之軍事力量產生影響⁴³。故我國軍 通資站台在面臨中共軟、硬殺等威脅及反制 不易下,意味著國軍於「戰力防護」階段, 要確保指管通網情監偵系統暢通,將面臨巨 大挑戰,其結果恐致使我國軍無法掌握戰場 完整主控權。

 (二)指管通網情監偵系統易遭偵測癱瘓 隨著載具(台)、單兵等數位裝備日新月
 異,虛擬網路空間更加依賴電磁頻譜的安全
 性。面對兩岸衝突時,其「戰略支援部隊」
 併用電子戰和網路戰等手段,搶占戰場資訊
 控制主導權,以支援軍事行動在多領域之自
 由行動能力⁴⁴。我國在2019年《國防報告書
 》指出,中共在其「網電一體戰」目標發展
 下,已具備運用電子偵察機及反輻射無人機
 對我國C4ISR及預警等雷達實施干擾或攻擊
 能力⁴⁵。另值得注意的是,2019年美軍為避
 免軍事作戰行動及部署,遭敵國用無線電和
 雷達等電子設備偵測,已增加投資及實驗「 低發現機率/低探測機率」(low probability of intercept/low probability of detection, LPI/LPD)通信系統和被動或多靜 態感測裝備;如針對Link-16全向性高功率 通信系統,以及艦載雷達主動陣列式SPY-6 雷達感測器等進行研改作業⁴⁶。因此,我國 軍指管通網情監偵在缺乏類似裝備防護下, 透露出我軍機動載台、雷達通信網路一旦遭 受到攻擊,將衝擊我軍遂行「濱海決勝、灘 岸殲敵」階段聯合作戰能力,尤其在預想決 戰海域時,三軍聯合火力打擊成效將難以發 揮。

87 878³

二、策進作為

面對中共「網電一體戰」對我國軍資電 站台及指管通網情監偵系統造成極大威脅, 國軍應著眼於戰場覺知能力提升,確保我國 指管通資系統干擾能力,以強化三軍聯合作 戰反制能力,建議如後:

(一)發展人工智慧,導入指管通網情監 偵系統

 1. 面對中共武力犯臺之兵、火力優勢, 我軍整體防衛構想中「戰力防護重點」,為 精進指管通網情監偵系統與備援系統建立⁴⁷。由於數據資料鏈路為未來戰場掌握情資、
 遂行指揮管制、發揮兵火力之首要工具,國 軍指管通資情監偵系統應建置自動化數據傳
 輸鏈路,並整合新一代兵力、武器系統⁴⁸,

註43: Cheng ,Dean , Cyber Dragon: Inside China's Information Warfare and Cyber Operations (United States ,Praeger,2016),pp.214-215.

註44: Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2019," May, 2019, pp.88

註45:同註3。

註46: Bryan Clark, "2019 Forecast: Hard Choices On Invisible Warfare," breaking defense, January 4,2019 ,https://breakingdefense. com/2019/01/2019-forecast-hard-choices-on-invisible-warfare/,檢索日期:2020年2月1日。

註47:林宜昌,〈資訊戰對國軍防衛作戰重要性之研究〉,《海軍學術雙月刊》,第53卷,第6期,2019年12月1日,頁125。

註48: George I. Seffers, "Information Warfare Platform Goes to Sea," The Cyber Edge, February 1, 2020https://www.afcea.org/ content/information-warfare-platform-goes-sea,檢索日期: 2020年2月1日。

<mark>從中共「網電一體戰」探討共軍</mark>戰略支援部隊作戰能力

以提高通信效能。畢竟,面臨像美軍將「電 子戰」和「網路戰」相結合,所開發之網路 電子一體戰武器「蘇特(Suter)」時,國軍 指管系統將面臨遭入侵都不自知的困境⁴⁹。 因此,若能及時監控通資系統有無異常,將 成為國軍確保指管系統安全之重要能力。

D. Downer

2. 隨著目獲所需指管通資系統需求增加 ,數據整合也隨之擴大。以美國為例,2020 年美海軍為強化艦載作戰能力,規劃於林肯 號(Lincoln, CVN-72)航空母艦安裝資訊戰 平台,重點項目為網路、人工智慧和數據分 析,以提高系統互操作性及靈活性⁵⁰。因此 ,參考美海軍於聯戰指管系統導入人工智慧 之作法,國軍也應檢討將人工智慧導入於三 軍武器、載台與作業系統,據以整合各式感 測器、雷達與通信系統,俾利精準掌握指管 通資系統免遭入侵攻擊。另人工智慧亦可優 先納入無人機導航軟體,以提升指管通網情 監偵系統,及目標篩選或搜尋有價值資訊之 能力,俾利掌握敵對我軍危害最大之目標, 進而強化對中共航艦、兩棲登陸船團等目標 , 實施聯合火力攻擊之能力。

(二)採購電磁頻譜管理工具,提升軍事 決策反制能力

面對作戰節奏日漸快速,誰能擁有戰場 覺知優勢,誰就擁有戰爭主動權。要打亂中 共攻臺作戰節奏,關鍵因素在於我軍能迅速 集中兵、火力於決戰海域對中共船團實施聯 合火力制壓。「資通電」軍應思考運用電子 反制作為,以擾亂敵作戰節奏,同時防護我 C41SR戰場指管系統,並以有效整合聯合情 監偵能量為重要任務51。然而,隨著中共「 網電一體戰」的發展,其指管誦資系統已具 備防範敵國運用網路偵蒐、電子偵察及干擾 等能力; 換言之, 運用電子戰攻擊中共集團 **軍、登陸船團等指管通資系統,尚不足使中** 共攻臺戰役部隊兵力分離。因此,要於決勝 海域整合空中、海上及地面兵力對敵實施聯 合火力打擊,除指管通網情監偵系統導入人 工智慧及增購電子戰裝備,打亂中共攻擊節 奏外,還須提升我國軍事決策反應時間。故 建議參考美軍購置於「電磁頻譜管理工具」 (EW Planning Management Too, EWPMT)⁵², 並優先部署於軍團級以上任務部隊,統一管 制運用,透過可視化虛擬共同圖像,以掌握 敵登陸船團位置,提供指揮官火力目標下達 位置,俾利縮減我國軍決策時間,強化聯合 火力制壓能力。

(三)建立「網路、電磁頻譜管理中心」,確保聯合通資聯合環境不相干擾

面對未來中共在陸地,海洋,空中,網 路空間及電磁頻譜等多領域作戰模式,要集 中火力對中共登陸船團實施火力打擊,其指 管數據鏈路系統應避免頻率相互干擾。雖然

註49:謝圓富,〈資訊戰的矛與盾-蘇特系統與區塊鏈技術〉,《海軍學術雙月刊》,第53卷,第2期,2019年4月1日,頁 136。

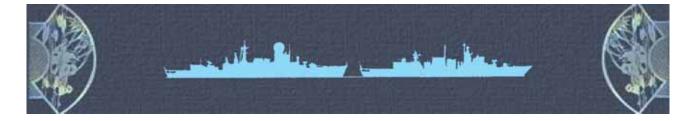
註52:「電磁頻譜管理工具」為2019年美軍委雷神公司所研發的作業工具,該系統為將各軍、兵種不同的感測器之數據,整 合至數位電子地圖,以提升部隊指揮官態勢感知能力,強化軍事決策能力。

註50: George I. Seffers, "Information Warfare Platform Goes to Sea," The Cyber Edge, February 1, 2020, https://www.afcea.org/ content/information-warfare-platform-goes-sea,檢索日期:2020年2月1日。

註51: 〈總長履新視導資通電軍 期勉前瞻建軍發揮有效戰力〉,《青年日報》,2020年2月13日,版3。

,我國由參謀本部所屬專業幕僚單位於戰時 負責指導、統一管制國軍電磁參數運用;然 因現行頻率分配權責由各軍種負責,且空中 、海上及陸面聯戰任務部隊分散。因此,為 有助於國防部整合電磁頻譜作戰中所需具靈 活、多功能之系統,應將不同部門加以整合 ,成立「網路、電磁頻譜管理中心」,使各 個部隊間能相互合作⁵³,達到整合三軍網路 戰及電子戰之能力,確保頻率不相互干擾, 以強化國軍網路資訊戰快速應變能力。

伍、結語


隨著通資系統愈來愈依靠無線電傳輸及 網路分享資訊,綜合使用電子戰和網路戰, 已成為軍事強國發展「不對稱作戰」能力之 重要手段。中共「戰略支援部隊」在其「網 電一體戰」發展架構下,已具備加速癱瘓敵 國指管通資系統,提升軍事決策優勢,強化 整體防禦能力,積極發展網路武器及電子訊 號偵蒐裝備,將是中共於資訊化條件下作戰 重要手段。在「戰略支援部隊」由中央軍委 統一指揮後,共軍確已具備整合網路空間及 電磁頻譜等作戰能力,此舉也已改變聯合作 戰力量集中方式、加速作戰進程,提高作戰 效益,拓展作戰空間,對國軍戰時遂行資電 作戰防禦任務,將構成極大威脅。

不僅如此,由於臺灣本島地形狹長,戰 略縱深不足,面對中共使終不放棄武力犯臺 之威脅,我國高山通資站台及通資系統已成 為中共攻臺戰役首要之目標。因此,面對未 來作戰節奏快、戰場空間已為多領域作戰的 時代,積極發展人工智慧,以強化指管通網 情監偵系統整合能力;另一方面,儘速採購 電磁頻譜管理工具,以提升軍事決策反制能 力,確屬刻不容緩之事。此外,成立「網路 、電磁頻譜管理中心」以整合三軍網路戰及 電子戰之能力,確保聯合通資聯合環境不相 干擾,亦同等重要。唯有如此多管齊下,方 能有助我國及早掌握對我軍危害最大之目標 (主要以中共航艦、兩棲登陸船團等)實施聯 合火力打擊,才能確保「戰力防護、濱海決 勝、灘岸殲敵」之整體防衛作戰任務達成。

作者簡介:

王清安上校,中正理工學院88年班、國防 大學陸軍指揮參謀學院98年班、國防大學 戰爭學院106年、國防大學戰略暨國際事務 研究所107年班,曾任陸軍資通電群營長、 參謀主任、馬防部通資組長,現服務於陸 軍通信訓練中心。

註53:宋吉峰,〈無聲無息的戰爭:電磁頻譜作戰的未來發展〉,《海軍學術雙月刊》,第51卷,第1期,2017年2月1日, 頁72-73。

92 海軍學術雙月刊第五十四卷第三期